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Chapter 1. 
1. Luca Calibration (luca)

Luca (Let us calibrate) is a multiple-objective, stepwise, automated procedure for model calibration (Hay and
Umemoto, 2006). It was originally developed by the United States Geological Survey (USGS) for use with the
PRMS model compiled with the USGS’s Modular Modeling System (MMS) (Leavesley and others, 1996). The
USGS version of Luca was a wizard-style user-friendly graphical user interface (GUI) that provides a systematic
way of building and executing a calibration procedure. The calibration procedure uses the Shuffled Complex
Evolution global search algorithm (Duan and others, 1994) to calibrate user selected model parameters.

The Object Modeling System (OMS) (David and others, 2002, 2010; http://www.javaforge.com/project/oms)
project has revised the Luca interface for applications within OMS. The revision changes the user interface for
Luca from a wizard-style GUI to a script-based interface that is compatible with applications of OMS using the
OMSConsole. The OMS version of Luca provides all the calibration functionality of the original USGS version.
The OMS version also includes the added ability to calibrate selected parameters on sub basins within a larger
watershed, and adds the option to use custom objective functions, and works with any model that is integrated
into OMS.

Where appropriate, sections of the original Luca users manual are used in this document to insure consistency in
descriptions, definitions, and terminology so as to minimize confusion between documents and among users of
both the MMS and OMS frameworks. In the use of quotes from the original Luca users manual, you can substitute
OMS for MMS in almost all instances to describe the application of Luca in OMS.

The Luca framework is based on the concepts of steps and rounds. A step is composed of a user-defined set
of parameters to be calibrated using one or more user-selected objective functions. A round is the sequential
computation of all defined steps. The original Luca users manual describes the relation of steps and rounds well.

“Luca requires a user-defined number of steps, which are executed sequentially within a us-
er-defined number of rounds. To start the calibration procedure, an initial parameter file con-
taining all MMS parameters is defined. The parameters identified for each calibration step are
calibrated. These calibrated parameter values replace the respective parameter values in the pa-
rameter file, and this parameter file is used as the initial parameter file for the next calibration
step. Completion of the user-designated number of steps constitutes a round. Once a parameter
is calibrated, its value is set for the remainder of that calibration round. This process is repeated
until the user-designated number of steps and rounds are completed.”
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Figure 1.1. Rounds and Steps in Luca

As noted, the primary change in the use of Luca in OMS is the use of a Luca script, denoted by the suffix of .luca
appended to the file name, to define the steps and rounds, and the control elements of the the Luca computational
procedures. The details of the .luca script and selected examples are provided below.

1.1. Shuffled Complex Evolution (SCE)

The Luca calibration procedure uses the Shuffled Complex Evolution (SCE) methodology. It is described in the
original users manual as follows.

Duan and others (1994) provide a detailed description of the SCE algorithm implemented in
Luca. The SCE global optimization algorithm, developed by Duan and others (1992), addresses
the difficulties in optimization when there are several regions of attraction and multiple local
optima in the parameter space. SCE avoids the problem of being trapped in local optima by using
a population-evolution-based global search technique, which searches for the optimal solutions
from a population of possible solution points, rather than a single point. ...

In SCE, the set of parameters to be calibrated is considered a point in N-dimensional space,
where N is the number of parameters to be optimized. SCE randomly samples S points in the
feasible parameter space. The MMS executable is run with each point (parameter set) and an
objective function is calculated. The objective function determines how close the simulation
results are to “observed” values. The S objective function values are sorted by increasing order
(where lowest is the “best” fit) and then divided into a user-defined number of complexes (P),
each containing M points. Each complex is evolved by using the Competitive Complex Evo-
lution algorithm (based on the Nelder and Mead (1965) Simplex Downhill search algorithm).
The points in the evolved complexes are combined into a single-sample population. The sample
population is sorted by increasing objective function value and shuffled into P complexes.

The shuffling loop is created and repeated until the results of the complex evolution meet one of
the following convergence criteria: (1) the number of MMS executions reaches the maximum
number of model executions ...; (2) the percentage change in the best objective function value
of the current shuffling loop and that of several shuffling loops before is less than a specified
percentage ...; or (3) the points converge into a very small region, which is less than 0.1 percent
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of the space within the lower and upper bounds of parameters. With each consecutive shuffling
loop, the number of complexes created decreases by one (P=P-1). This decrease stops when the
number of complexes reaches the minimum number of complexes required (Pmin). The output
is the parameter file containing the point (a parameter set) that has the best objective function
value.

The steps in the SCE procedure as described above can be summarized as:

1. Generating points. The set of parameters to be calibrated is considered as a point in N dimension space where
N is the number of parameters. SCE generates many points, in which each parameter has a random value within
its lower and upper bound values.

2. Assigning criterion values. The model is run with every point (a set of parameters) generated in SCE Step 1
as an input. An objective function that determines how close the simulation results are to observed values is
used to calculate a criterion value for each point.

3. Creating complexes. The points are divided into smaller groups called complexes such that points of good and
bad criterion values are equally distributed.

4. Complex evolution. Each complex is evolved in the following way: Several points are selected from the com-
plex to construct a sub-complex. In the sub-complex, a new point is generated, and a point that has a bad crite-
rion value is replaced with this new point. This evolution step is repeated several times with different random
points in a sub-complex.

5. Combining complexes. All points in the complexes are combined together to be one group.

6. SCE Steps (3) – (5) are called a shuffling loop. It is repeated until the results of the complex evolution meet
one of the following end conditions:

• The number of model executions reaches the maximum number of model execution

• The percent change in the best criterion value of the current shuffling loop and that of several shuffling loops
before is less than a specified percentage.

• The points converge into a very small region, which is less than 0.1% of the space within the lower and
upper bounds of parameters.

The number of complexes used in SCE Step 3 decreases by 1 for every shuffling loop. This decrease stops when
the number of complexes reaches the minimum number of complex required. The output is the parameter file
containing the point (a parameter set) that has the best criterion value.

1.2. Luca calibration script

A Luca calibration is executed using a OMS script file has the extension .luca. It is similar to the OMS simulation
script file with a .sim extension. The .luca file provides information on the model, parameter file and data file to
be used in the calibration procedure. In addition, it provides information on the initialization period and calibration
period, and the sets of parameters and objective functions that will be used in the calibration process. For purposes
of this discussion, the features and functions of the components of the luca file will be described in terms of
these basic script components.

The calibration sequence is defined as a series of steps and rounds. A step is associated with a selection of param-
eters from a given input-parameter file. A round consists of one or more steps. The calibration proceeds one step
at a time. At the completion of a step, the calibrated values of the parameters selected in that step are written to
the working parameter file and passed into the next step. This sequence of passing the working parameter file to
the next step is repeated until all steps are executed. The sequence of calibration steps is then repeated for the
designated number of rounds.co

An example luca file is shown below. It has 2 rounds and 2 steps.

/*
 * Luca calibration
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 */
import static oms3.SimBuilder.instance as OMS3

OMS3.luca(name: "EFC-luca") {

    // define output strategy: output base dir and
    // the strategy NUMBERED|SIMPLE|DATE
    outputstrategy(dir: "$work/output", scheme:NUMBERED)

    // define model
    model(classname:"model.PrmsDdJh") {
        // parameter
        parameter (file:"$work/data/efcarson/efc_test2_params.csv") {
            inputFile  "$work/data/efcarson/data.csv"
            outFile    "out.csv"
            sumFile    "basinsum.csv"
            out        "summary.txt"

            startTime "1980-10-01"
            endTime   "1985-09-30"
        }
    }

    output(vars:"date, basin_cfs, runoff[0]", fformat="7.3f", file:"out1.csv")

    summary_file "efc_test2_summary.txt"

    calibration_start "1982-10-01"         // Calibration start date
    start_month_of_year 10
    rounds 2                               // calibration rounds, default 1

    // step definitions
    // step 1
    step {
       parameter {
           jh_coef(lower:0.0005, upper:0.09, calib_strategy:INDIVIDUAL, subset:"0-*")
       }

       objfunc(method:ABSDIF, timestep:MEAN_MONTHLY, period_range:"1-12") {
           sim(file:"out1.csv", table:"EFC-luca", column:"basin_potet")
           obs(file:"$oms_prj/data/efcarson/efcrs_PEobs_monthOnly.csv", 
               table:"obs",column:"PE")
         }
     }

     // step 2
     step {                    
        parameter {
            soil2gw_max(lower:0.05, upper:0.5, calib_strategy:MEAN)
            ssrcoef_sq(lower:0.01, upper:0.5, calib_strategy:MEAN)
            tmax_allsnow(lower:30.0, upper:36.0, calib_strategy:MEAN)
        }
 
        objfunc(method:ABSDIF, timestep:DAILY, period_range:"1-12") {
           sim(file:"out1.csv", table:"EFC-luca", column:"basin_cfs")
           obs(file:"$oms_prj/data/efcarson/data_lucatest.csv", table:"obs",
                  column:"runoff[0]")
        }
    }
}

The first section of the .luca file provides the standard information OMS needs to execute a model. It begins with
a user-defined name of the Luca calibration. In this example the name is EFC-test2. This name will be used to
name a subdirectory created in the output directory of the OMS project. The subdirectory will contain the results
of the calibration process. The name of the .luca file is its single property but it has a number of Elements related
to the property.

luca Properties
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 Name  Description Type Required

name the name of the calibration String y

The elements of the .luca file are shown below.

luca Elements

 Name  Description Type Default Occurrences

outputstrategy{} output management StandardOutput ?

model{} the model to execute ?

output simulation resource
definition

String *

summary_file Specifies the name of
a summary file to cre-
ate

String no file generated if no
name specified

1

trace_file Specifies the name of
a calibration trace file
to create

String no file generated if no
name specifies

1

calibration_start start date of calibra-
tion

ISO Date String - 1

start_month_of_yearThe first month of the
12-month year. Used
to define the annu-
al period for ObjFunc
calculations.

int : 1 (Jan) - 12 (Dec) 1 (Jan) 1

rounds number of rounds int 1 ?

step{} calibration step defi-
nition

- +

The outputstrategy{} element defines the type of output files that will be generated by the .luca run. The options
are

• NUMBERED - a new subdirectory is created for each run and is sequentially numbered starting with 0000

• SIMPLE- only one subdirectory is created and it is overwritten for each run

• DATE - a new subdirectory is created for each run and is sequentially named with the date and time

The model{} element provides the name of the model to be calibrated and the associated information needed to
run the model. This information includes the path and name of the parameter file(s), the path and name of the
data file, the names of any other input or output files associated with the model, and the startTime and endTime
values for the model run.

The startTime and endTime values define the total period of the model run. The total period is composed of an
initialization period that runs the model through one or more wetting and drying cycles, and then a calibration
period where the selected objective functions are computed for parameter calibration purposes. The initialization
period runs from the startTime to the day prior to the user-defined calibration_start element. The calibration
period then runs from calibration_start to the endTime. The initialization period is intended to minimize any initial
biases in the estimated starting parameter values.

The output element declares the model variables that are to be written to a specified output file. These variables
are those that are to be used in the objective function computations in all the steps of the Luca calibration. In this
example basin_cfs and runoff[0] are the simulated and observed daily streamflow respectively.
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The summary_file element specifies the name of the file that will contain the summary information related to
the Luca calibration results. Information in the summary file includes the initial and calibrated parameter values
and objective function values.

The trace_file element specifies the name of the csv file that will contain information about the objective
function and parameter values for each iteration of the calibration algorithm. The results are broken up
by round and step.

The start_month_of_year specifies which month is the start of the annual (12 month) period for calculation
purposes. In the United States, water balance and other hydrologic measures are often computed on a water year
basis where the water year starts in the month of October (10). Other regions of the world may use the calendar
year which starts in the month of January (1). The start_month_of_year allows users to specify the month that is
appropriate for their purpose.

The rounds element defines the number of times that all the calibration steps will be executed. The step element is
where the details of each calibration step are provided. The step has a number of sub elements which are shown in
the table below. The step has a single property which is a name. If no name is provided, it will be given a number.

The sub elements parameter and objfunc are required to be provided by the user. The remaining sub elements
are parameters that relate to the steps in the SCE computational process as described above in section 1.1. Each of
the SCE parameters has a default value computed for it in each step based on the number and type of parameters
selected in the step. The user can override one of more of these default values, but they should be familiar with
the computational mechanics of SCE to insure the integrity of the SCE process. If no SCE parameter values are
provided, the default values will be used.

step Properties  Name  Description Type Required

name the name of the step String no

step Sub elements  Name  Description Type Default Occurrences

parameter{} parameter to
calibrate

- - +

objfunc{} objective func-
tion definition

- - +

max_exec maximum # ex-
ecutions in one
step

int 10000 ?

init_complexesInitial number
of complexes

int 2 ?

points_per_complexNumber of
points in each
complex

int 2*(# param val-
ues)+1

?

points_per_subcomplexNumber of
points in a sub-
complex

int (# param val-
ues) + 1

?

evolutions Number of evo-
lution steps be-
fore shuffling

int 2*(# param val-
ues) + 1

?

min_complexes Minimum num-
ber of complex-
es required

int 1 ?

shuffling_loopsShuffling loops
in which the
objective func-
tion value must

int 5 ?
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 Name  Description Type Default Occurrences

change by giv-
en % before
optimization is
terminated

of_percentage Percentage for
the objective
function value
(Range: 0-1)

double 0.01 ?

1.2.1. Step - parameter sub element

The parameter sub element can contain one or more parameters that are to be calibrated in the step. For each
parameter, a set of properties are available to specify details of the calibration procedure for each selected param-
eter. A simple example with one parameter is shown below.

parameter {
    jh_coef(lower:0.0005, upper:0.09, calib_strategy:MEAN, subset"0-*", filter_param:"hru_subbasin")
}

The lower and upper values are the lower and upper bounds on the parameter to be calibrated.

 Name  Description Type Required

lower the lower boundary double y

upper the upper boundary double y

calib_strategy the calibration strategy MEAN | INDIVIDUAL| BINA-
RY

n (default:MEAN)

filter_param The name of the filter pa-
rameter for calibration se-
lection

string n (default: match subset to
parameter value index in-
stead of this filterParam
value)

subset selects which subset of
params are to be used for
calibration

String ("m-n,p,...") n. (default: include all
parameter's values for cali-
bration)

subset_col Used as the column subset
for 2D array tables

String n

subset_row Used as the row subset for
2D array tables

String n

The calib_strategy has one of three possible approaches that can be selected.

• MEAN: Optimize based on the mean value of the parameter instances.

• INDIVIDUAL: Optimize each parameter instance independently.

• BINARY: Treat each individual parameter instance as a binary value. Optimize each individually.

filter_param and subset can be used to select which of the spatially or temporally distributed parameters are
to be used in calibration.

The user can specify neither of these, subset only, or both.

• If neither of these are included, then all parameter values will be included in calibration.
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• If only subset is specified without filter_param, then only parameter values with indexes matching any value
in the subset will be included in calibration.

• If both filter_param and subset are specified, then parameter values for which the corresponding filter_param
value is equal to any value in the subset will be included in calibration

• For 2D parameters, use subset_col and subset_row in place of subset in order to specify the desired columns
and rows. If subset is specified, it will act as subset_col. subset selection for 2D arrays using a filter_param is
untested, and so is not supported.

Examples:

Use all jh_coeff_hru values for calibration:

jh_coef_hru(lower:1, upper:100, calib_strategy:MEAN)

Use jh_coeff values 0-5 for calibration, where e.g. these might correspond to jh_coef monthly values for Jan-June:

jh_coef(lower:1, upper:100, calib_strategy:MEAN, subset:"0-5")

Use all jh_coeff_hru values with hru_subbasin=1 (i.e. use only the jh_coef_hru values for hru's within subbasin 1)

jh_coef_hru(lower:1, upper:100, calib_strategy:MEAN, filter_param:"hru_subbasin", subset:"1" )

Use subset_col and subset_row for a 2D parameter

jh_coef_hru(lower:1, upper:100, calib_strategy:MEAN, subset_col:"3-4", subset_row:"1,3,5" )

Note that calibration selection with filter_param and subset can be used with any calib_strategy.

MEAN

The details of mean were described in the original Luca manual as:

When the mean is chosen, the mean parameter value (instead of each individual parameter
value) is calibrated. Each time SCE generates a value for the mean, individual parameter values
are generated based on the new mean such that the mean-value distribution is preserved. This
option is a good choice when a spatially distributed parameter is chosen for calibration.

When the mean value is chosen as the calibration type, the individual parameter values must
be regenerated from the SCE-generated mean value. Given n-individual initial parameter values
(Pinitn), the new individual parameter values (Pn) are reproduced from the SCE-generated mean
(MEANSCE) by using the following equation:

Pn = {[(MEANSCE + C) * (Pinitn + C)] / {MEANINIT + C]} - C

where MEANINIT is the mean of n-initial parameters (Pinitn). C is a constant used to avoid zero
values in equation (1):

C = [absolute value of the user defined lower bound] + 10.0

The user must designate a Lower Bound and an Upper Bound for each selected parameter. The
lower bound cannot be greater than the minimum parameter value and the upper bound cannot
be less than the maximum parameter value. These bounds are used to guide the generation of
points in SCE. In SCE, a parameter set is considered a point in N-dimensional space, where N
is the number of parameter values in the parameter set. The initial individual values or mean
values of the parameter set displayed in Instruction 4-2 are used as one of the points in SCE.
The rest of the points are randomly generated by SCE such that each parameter value is within
its lower and upper bounds.

After entering the values for lower and upper bounds, the Actual Range sampled for the mean in
SCE is displayed when Use the mean value is chosen (red box in fig. 6). This range is calculated
based on the user-defined lower and upper bounds such that no individual values are out of
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range. Actual Range refers to the sampling range used in SCE. The Actual Range is calculated
as follows:

INDIVIDUAL

When INDIVIDUAL is chosen, each individual value of a distributed parameter is calibrated. All or a subset
of individual values of a parameter can be selected using the range element. A caution from the original users
manual is

The user is cautioned against using this choice when a parameter is dimensioned by more than 12.
After entering the values for lower and upper bounds, the actual range sampled for the individual
values in SCE is displayed. The actual range is equal to the user-defined bound when Use the
individual values is selected as the calibration type.

The INDIVIDUAL option is typically used when there are external measures available against which to compare
model computed results for each individual parameter value. An example of this is the calibration of the monthly
parameter in the Jensen-Haise potential evapotranspiration (PET) equation. The user can specify an external file
with measured or estimated mean monthly PET that can be used with the simulated mean monthly PET for each
month to compute the selected objective function. See the example of this in the Examples section of this document.

BINARY

The BINARY option is used only for those parameters that consist of values of 0 or1. An example might be a
model that uses 0 and 1 to specify a subset of temperature of precipitation stations to use in the computation of
distributed temperature and precipitation in a basin. All or a subset of individual values of a binary parameter can
be selected using the range element. The description used in the original users manual is

When Parameters are binary (0,1) is chosen for calibration ..., the parameter values for the high-
lighted parameter must be either 0 or 1... The Lower Bound and Upper Bound are (0,1) for this
choice. When the SCE-calibrated value is greater than or equal to 0.5, the parameter value is
set to 1. Otherwise, it is set to 0. If all parameter values are chosen for calibration, then keep
in mind that they may all be set to 1 (or 0) at any time in the SCE process. The user should be
familiar with their model. If the model requires one of the binary parameters to be set to 1 (or
0), the user must ensure that the ... Initial Parameter Value are set accordingly.

1.2.2. Step - objfunc sub-element

The objective function sub-element objfunc specifies the mathematical form of the objective function, the time
period over which the objective function is computed, and the simulated (sim) and observed (obs) variables to
be used in the objective function, and the path to the variable locations. Luca also supports the use of multiple
objective functions for a step. The objfunc sub-element properties as shown in the table below.

 Name  Description Type Required

method the objective function See objective function ta-
ble below

timestep the time step for simulated
and observed values

RAW | TIME_STEP |

DAILY | MONTHLY_MEAN

| MEAN_MONTHLY

| TANNUAL_MEAN

| PERIOD_MEDIAN

| PERIOD_MIN |

PERIOD_MAX |

PERIOD_STDEV

n (default: DAILY)

weight the objective function
weight

double (0 - 1.0) n 2)

period_range Defines which months to
include in analysis

String ("m-n,p,...") where
m,n,p are 1-12 for Jan-Dec

n (default "1-12")
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 Name  Description Type Required

subdivide_value If a subdivide file is speci-
fied, only include the dates
matching these values in
the subdivide file when
computing the ObjFunc

String("m-n,p,...") n (must be specified if a
subdivide file is used.)

The method defines the mathematical function that will be used to compute the objective function. The methods
available and their names are shown in the table below.

Table 1.1. Objective Function methods

 Name Description Equation

ABSDIF Absolute difference

ABSDIFLOG Absolute difference Log

AVE Absolute Volume Error

IOA Index of Agreement

IOA2 Index of Agreement (Pow 2)

NS Nash-Sutcliffe

NSLOG Log of Nash-Sutcliffe

NS2LOG Log of Nash-Sutcliffe (Pow 2)

BIAS BIAS

PMCC Pearson product-moment correla-
tion coefficient

RMSE Root Mean Square Error

TRMSE Transformed Root Mean Square Er-
ror  , 

The timestep defines how the user-selected simulated and observed variable will be used to compute the objective
function (OF). The available timesteps are

• RAW: take data exactly as-is without applying the period-range or assuming any timescale. Timestamp on data
is completely ignored. It is up to the user to ensure that the time of the Observed and Simulated data match
line for line.
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• TIME_STEP : take data as-is but apply the period-range, without assuming any timescale. It is up to the user to
ensure that the time of the Observed and Simulated data match line for line.

• DAILY : a value for each day.

• MEAN_MONTHLY : the arithmetic mean of the monthly means of a given month during a specified period of years.
For example, the mean monthly value for January is the mean of all January mean values computed over the
period of years used in the OF computation.

• MONTHLY_MEAN : the arithmetic mean of values for a given month. For example, the monthly mean is computed
as the sum of the means of all months in the period specified, divided by the total number of months in the period.

• ANNUAL_MEAN : the mean of all data within each year. The annual period (i.e. year) starts in start_month_of_year.

• PERIOD_MEDIAN : the median of all data within the period_range of months each year. The annual period (i.e.
year) starts in start_month_of_year

• PERIOD_MIN : the minimum of all data within the period_range of months each year. The annual period (i.e.
year) starts in start_month_of_year

• PERIOD_MAX : use the maximum of all data within the period_range of months each year. The annual period
(i.e. year) starts in start_month_of_year

The weight is used when multiple objective functions are defined for a step. The user can assign a different weight
to each objective function. The sum of the weights assigned must equal 1.0. If no weights are assigned by the user,
equal weight will be given to each objective function.

The period_range allows the user to specify a period of months for the objective function computation. If the
period selected is 1-5, then the objective function will be computed for the months of January through May. If the
start_month_of_year is October (10) and the selected period of objective function computation is October through
February, the period_range can be specified as (10-12, 1-2) or (1-2, 10-12). The order of the sequence of months
is not critical.

A subdivide_value is used when an external file is provided to specify specific times when the associated objective
function is to be computed. For example, if a user wants to calibrate the parameters in this step using only days
below a specified streamflow rate (low flow period), then an external file can be prepared that contains a date and
an integer value for each day within the data range. For example, in the external file, the value 1 could be assigned
to specify all days that are below the user-selected streamflow value. All other days would be assigned an integer
value different from 1. The objective function then will only be computed on days that the value in the external
file equals the subdivide_value, in this example case a value of 1.

The name and location of the simulated (sim) and observed (obs) variables to be used in the computation of the
objective function are defined using the sim, obs, and, in some cases, the subdivide properties of the objfunc sub-
element. These objfunc properties are shown in the table below.

1.2.3. ObjFunc Subelements sim, obs, and subdivide

The objfunc element has 3 subelements, describing the data to be used to compute the objective function value
from.

 Name  Description Type Default Occurrences

sim the simulated vari-
able information

sim{} - 1

obs the observed variable
information

obs{} - 1

subdivide subdivide file con-
taining information

subdivide{} if not specified, do
not use subdivide file

?
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 Name  Description Type Default Occurrences

about which dates to
use this objfunc for.

Each of these properties is specified using the file, table, and column attributes of a standard OMS file structure.
The file attribute is the path to the specified file containing the variable. The table is the name of the table that
contains the variable, and the column is the column name within this table that contains the variable. The example
below shows a file generated by the output element of Luca. The file name will be the name assigned in the output
element and the table name is the name of the Luca script. The @T indicates the start of table information, with the
table name EFC-luca being the first element. The @H indicates the header information which provides the names
of each column. The date column is followed by four columns of daily output variables that were specified in the
output element of the Luca script (described above).

@T, "EFC-luca"
 created_at, "Tue Feb 21 16:05:35 MST 2012"
 date_format, yyyy-MM-dd hh:mm:ss
@H, date, basin_cfs, basin_potet, runoff[0], swrad[0]
 type, Date, Double, Double, Double, Double
, 1980-10-01 12:00:00, 116.453,   0.189,  84.000, 568.171
, 1980-10-02 12:00:00, 117.684,   0.176,  82.000, 562.129
, 1980-10-03 12:00:00, 113.514,   0.187,  80.000, 560.905
, 1980-10-04 12:00:00, 112.072,   0.177,  80.000, 554.866
, 1980-10-05 12:00:00, 110.649,   0.159,  80.000, 546.476

An example of the objfunc sub-element is shown below. In this example the sim variable is located in the file
generated by the output element of the Luca script and so the path to this file is assumed to be in the OMS project
output directory. However, the obs variable is being taken from the input data file being read by the model and
the path to this file is defined relative to the top level of the OMS project directory which is written as $oms_prj.
The path to the subdivide file is also specified using the $oms_prj convention.

objfunc(method:ABSDIF, timestep:DAILY, period_range:"1-12", subdivide_value:1) {
    sim(file:"out1.csv", table:"EFC-luca", column:"basin_cfs")
    obs(file:"$oms_prj/data/efcarson/data_lucatest.csv", table:"obs",column:"runoff[0]")
    subdivide(file:"$oms_prj/data/efcarson/efc_subdivide.csv", table:"sd", column:"sd_data")  
}

The subdivide file in this example was created using an external program that assigned the integer value of 1 to all
days with streamflow below a low flow threshold value. The subdivide file format, shown below, uses the standard
OMS data file structure. The table (@T) and header (@H) fields provide information about the table contents.
The column name sd_data is the column that is identified in the objfunc sub-element. The table name and header
column names are the only required elements of the subdivide table, but other information about the source of the
data and the streamflow station is also permitted but not required.

@T,sd,
 created_at,"May 29, 2008",
 created_by,george,
 converted_from,efcarson.data,
 date_start,1980 10 1 0 0 0,
 date_end,"  ""1986 09 30 0 0 0""",
 date_format,yyyy MM dd H m s,
,,
@H,date,sd_data
name,,E FK CARSON
ID,,10308200
elevation,,5400
x,,-119.7648985
y,,38.7146274
 type,Date,Real
,1980 10 1 0 0 0,1
,1980 10 2 0 0 0,1
,1980 10 3 0 0 0,1
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,1980 10 4 0 0 0,1
,1980 10 5 0 0 0,1

1.3. Luca examples

1.3.1. PRMS model, 3 parameters, strategy MEAN, timestep DAILY

This step example has 3 parameters from the PRMS model. The first two parameters are distributed parameters.
The soil2gw_max has a value for each hydrologic response unit (HRU), the ssrcoef_sq has a value for each sub-
surface reservoir, and tmax_allsnow is a scalar parameter. The strategy MEAN is used for all parameters. In this
case the relative magnitudes of the parameter values in each of the distributed parameters will be maintained.

The objective function method selected is the absolute value of the difference between the daily values of the
simulated and observed values of streamflow. Here basin_cfs is the simulated value and obs is the observed value.

step {                    
    parameter {
        soil2gw_max(lower:0.05, upper:0.5, calib_strategy:MEAN)
        ssrcoef_sq(lower:0.01, upper:0.5, calib_strategy:MEAN)
        tmax_allsnow(lower:30.0, upper:36.0, calib_strategy:MEAN)
    }
 
    objfunc(method:ABSDIF, timestep:DAILY) {
       sim(file:"out1.csv", table:"EFC-test1-luca", column:"basin_cfs")
       obs(file:"$work/data/efcarson/data_lucatest.csv", table:"obs", column:"runoff[0]")
    }
}

1.3.2. PRMS model, 1 parameter, strategy INDIVIDUAL, timestep
MEAN_MONTHLY

This step example has a single parameter from the PRMS model and uses the INDIVIDUAL strategy for calibra-
tion. The parameter, jh_coef is a set of monthly coefficients used in the Jensen-Haise potential evapotranspiration
(PET) computation. The range of 0-* indicates that all 12 values of the jh_coef will be used in the objective func-
tion computation.

step {
    parameter {
       jh_coef(lower:0.0005, upper:0.09, calib_strategy:MEAN)
    }

    objfunc(method:ABSDIF, timestep:MEAN_MONTHLY, period_range:"1-12") {
       sim(file:"out1.csv", table:"EFC-test-luca", column:"basin_potet")
       obs(file:"$oms_prj/data/efcarson/efcrs_PEobs_monthOnly.csv", 
            table:"obs",column:"PE")
    }
}

The objective function method selected is the absolute value of the difference between the mean monthly values
of the simulated and estimated PET. The mean monthly simulated PET is computed for each month by summing
the daily values for that month and dividing by the number of days used in the sum. The result is the mean daily
value for that month. The observed, or estimated observed, value for each month is provided using an external
table of values, one value for each of the 12 months. The table uses the standard OMS format. The external table
used in this example is shown below.

@T,obs
 created_at,9/29/2011
 created_by kmolson,
 converted_from,efcarson.data
 date_format,"MM"
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@H,date,PE
 type,Date,Real
,01, 2.7781436E-02
,02, 4.3615162E-02
,03, 7.5734042E-02
,04, 0.1202449    
,05, 0.1635550    
,06, 0.1940680    
,07, 0.2033970    
,08, 0.1888348    
,09, 0.1547211    
,10, 0.1100197    
,11, 6.6857137E-02
,12, 3.6761027E-02

1.3.3. PRMS model, 1 parameter, strategy BINARY, timestep ANNUAL_MEAN,
period_range 2-7

This step example has a single parameter from the PRMS model and uses the BINARY strategy for calibration. The
parameter psta_nuse is a distributed parameter with a value of 0 or 1 for each precipitation station in the data file.
This parameter is used in the PRMS XYZ precipitation distribution computational method. A value of 1 indicates
to include the station in the computation and a value of 0 indicates to exclude the station from the computation.
The range indicates that all stations (0-*) will be used in the calibration. The calibration will determine which
combination of the selected precipitation stations gives the best fit of the simulated streamflow to the observed
streamflow.

The objective function method selected is the absolute value of the difference between the annual mean of the
simulated and observed values of streamflow. The period selected is March through August (3-8) so the annual
mean will really be the sum of the daily values from March through August divided by the total number of days
in the sum.

step {                     
        parameter {
            psta_nuse(lower:0, upper:1, calib_strategy:MEAN)
        }
        objfunc(method:ABSDIF, timestep:ANNUAL_MEAN, period_range:"3-8") {
           sim(file:"out1.csv", table:"yampa-luca", column:"basin_cfs")
           obs(file:"$oms_prj/data/yampaStmBt/yampa_data.csv", table:"obs",
           column:"runoff")
       }
   }

1.3.4. Monthly Water Balance model, 2 parameters, timestep MONTHLY_MEAN,

This step has 2 parameters from a monthly water balance model. The time step of the input data to drive the model
is monthly. The 2 parameters are distributed parameters used to compute lake outflow as function of storage above
lake outflow elevation. In this example the parameters associated with a single lake identified by the range value
of 1 will be calibrated.

The objective function method selected is the absolute value of the difference between the monthly mean of the
simulated and observed values of lake outflow. The period_range 1-12 indicates that the outflow values for all
12 months will be used to compute the monthly mean over the calibration period. All monthly outflows will be
summed and divided by the number of values used to compute the sum to compute the monthly mean.

step {                     
        parameter {
            rout_coef_alpha(lower:1.0, upper:50.0, calib_strategy:MEAN, subset:"1")
            rout_coef_m(lower:1.0, upper:5.0, calib_strategy:MEAN, subset:"1")
        }

        objfunc(method:ABSDIF, timestep:MONTHLY_MEAN, period_range:"1-12") {
           sim(file:"out.csv", table:"Blue-luca", column:"lakesurf_elev[1]")
           obs(file:"out.csv", table:"Blue-luca", column:"runoff[3]")
       } 
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    }

1.3.5. Calibration selection example

This step uses the calibration selection to only base calibration on jh_coef_hru parameter values for which the
hru_subbasin is equal to 2. In this example, only psta_nuse values with index 1, 4, and 6 (values 14.8, 13.4, and
15.1) would be used for calibration because only the hru_subbasin values with those indexes is equal to the range
of 1 or 2.

Parameter data:
@P, jh_coef_hru,       "{12.6, 14.8, 13.4, 14.7, 13.4, 13.4, 15.1, 12.7}"
@P, hru_subbasin,      "{   3,    2,   3,    4,     2,    4,    1,    3}"

Luca Code:

... 
step {                     
        parameter {
            jh_coef_hru(lower:0, upper:1, calib_strategy;INDIVIDUAL, 
                filter_param:"hru_subbasin", subset:"1,2")
        }
        objfunc(method:ABSDIF, timestep:DAILY, period_range:"1-12") {
           sim(file:"out1.csv", table:"yampa_calibParam", column:"basin_cfs")
           obs(file:"$oms_prj/data/yampaStmBt/yampa_data.csv", table:"obs",
           column:"runoff")
       }
   }
...
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